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Abstract

This paper defines a learning algorithm for plan grammars
used for plan recognition. The algorithm learns Combinatory
Categorial Grammars (CCGs) that capture the structure of
plans from a set of successful plan execution traces paired
with the goal of the actions. This work is motivated by past
work on CCG learning algorithms for natural language pro-
cessing, and is evaluated on five well know planning domains.

Introduction
Combinatory Categorial Grammars (CCGs) (Steedman
2001) are a well known and effective grammar formalism
developed for natural language processing (NLP). Past work
has shown that plan recognition (PR) (the problem of rec-
ognizing an agent’s plans based on observations of their
actions (Schmidt, Sridharan, and Goodson 1978) ) can be
viewed as parsing a stream of observations using a grammar
that defines the possible acceptable plans(Vilain 1990). Re-
cent work, implemented in the ELEXIR system(Geib 2009;
Geib and Goldman 2011) has very effectively used proba-
bilistic CCGs to represent and recognize plans in a num-
ber of domains. It also demonstrated a number of advan-
tages over previous work including efficient recognition of
partially-ordered plans, multiple interleaved plans, and plans
with loops. That said, such plan CCGs encode significant
domain knowledge, and in past research, required time con-
suming hand-coding. This paper presents an incremental,
domain-independent, supervised, probabilistic learning al-
gorithm, LEXlearn, for the plan CCGs required by ELEXIR.

This work builds on prior work (Zettlemoyer and Collins
2005; Kwiatkowski et al. 2010), inducing CCGs for natural
language grammars. Like this prior work, LEXlearn learns
probabilistic CCGs based on sequences of observations (in
their case words, in ours actions) paired with a representa-
tion of the sequence’s ”meaning” ( logical form of the sen-
tence’s meaning for them, goal state for us). This said, it
is worth noting that plan recognition is inherently different
from sentence parsing. Linguists have tentatively identified
the basic parts of speech a word could take on (eg. noun,
verb, article, adverb, etc...) and this knowledge is used to
inform NLP learning algorithms. However, no such set of
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basic types exists for reasoning about actions. Thus, using
these algorithms for plan grammars requires removing some
of the linguistic intuitions that guided their formulation.

The rest of this paper is structured as follows: First, it
presents related work on action and plan learning, and CCG
induction in NLP. Second, it provides an introduction to plan
CCGs and ELEXIR. Third, it presents a new plan CCG
learning algorithm, LEXlearnand its experimental evalua-
tion and concludes with a discussion of future work.

Related Work
There are three areas of related work for this research: 1)
action learning, 2) plan hierarchy learning, and 2) CCG in-
duction in NLP. We consider each of these in turn starting
with action learning. The objective of action learning is to
learn a set of precondition and effect rules that describe the
results of executing a ”basic action” in various world states.
Successful work in this area has been based on both PDDL
(Yang, Wu, and Jiang 2007) and STRIPS style action de-
scriptions (Mourao et al. 2012). While such work is impor-
tant, it is not the focus of this work. Instead, this work learns
plan hierarchies that abstract common sequences of actions
into more abstract plan structures like those in Hierarchical
Task Networks (HTNs) (Erol, Hendler, and Nau 1994) .

Next, we consider work on learning such HTN plan struc-
tures that is much closer to this work. In addition to having
low-level, executable actions, HTNs also have more abstract
tasks that capture complex sequences of actions. Tasks are
defined by one or more methods: a production rule with a
task name on the left hand side and a sequence of basic ac-
tions and task names on the right:

task→ {action∗task∗}∗

Such methods can straightforwardly be seen as context free
grammar (CFG) rules(Erol, Hendler, and Nau 1994). The
addition of methods and a decompositional approach to the
planning process, similar to CFG grammar rewriting meth-
ods, are the hallmark of HTN planning. Some formulations
of HTNs augment methods with ordering constraints, pre-
conditions, and even effects that we will not focus on here.

Learning HTN plan hierarchies amounts to learning the
methods that define abstract tasks. (Hogg, Muñoz Avila, and
Kuter 2008) successfully learns HTN methods from analyz-
ing the state of the world before and after a given sequence



of actions. (Zhuo, Muñoz-Avila, and Yang 2014) builds an
HTN from partially-observable plan traces. (Nejati, Lang-
ley, and Konik 2006) learns teleoreactive logic programs,
a specialized class of HTNs, from expert traces. There are
two central differences between this work and ours. First,
all three works focus on learning non-probabilistic HTNs,
whereas our work focuses on probabilistic CCGs. Second,
our work learns in the action space rather than the state
space. That is, this work learns abstractions based on fre-
quent sequences of actions rather than state changes.

The two closest related works to our approach are (Bis-
son, Larochelle, and Kabanza 2015; Li et al. 2014). (Li et
al. 2014) successfully learn probabilistic HTNs (pHTNs) us-
ing techniques from Probabilistic CFG induction. However,
they use expectation maximization for estimating the proba-
bility model, whereas our work uses gradient ascent. While
related, (Bisson, Larochelle, and Kabanza 2015) use neural
networks to solve the more limited problem of learning the
probability model given an HTN. Our work, learns the plan
grammar and its probability model. Finally, we would note,
this is the first work on learning plan CCGs.

There is also related work from the NLP literature on
learning CCGs for language. (Thomforde and Steedman
2011) presents Chart Inference, an unsupervised method
used to derive structured CCG categories for unknown
words using a partial parse chart. (Bisk and Hockenmaier
2012) provide an unsupervised CCG learner to generate cat-
egories from part-of-speech (PoS) tagged text that relies
on minimal language-specific knowledge. (Kwiatkowski et
al. 2012) define an CCG induction algorithm to learn sen-
tence and semantic representation pairs from child utter-
ances. (Zettlemoyer and Collins 2005) use supervised CCG
induction to learn a mapping between sentences and their
semantic representations. However, the different domains
of application necessitate changes to the learning approach.
First the different domains require different input represen-
tations for the observed tokens, (ie. words vs. actions) and
meanings (ie. sentential logical forms vs. goal states). Sec-
ond, our method of generating new CCG categories is dif-
ferent than those used by natural language CCG learners be-
cause, as we have already mentioned, the prior work is in-
formed by linguistic intuitions that do not hold in the action
domain. Finally, the gradient used to learn our probability
model is different than (Zettlemoyer and Collins 2005). That
said, this work takes this prior work as inspiration.

Representing Plans using CCGs
Next we will briefly describe plan CCGs and their use
for plan recognition following the definitions used for the
ELEXIR system in (Geib 2009; Geib and Goldman 2011).
In this work, each action in a planning domain is associated
with a set of CCG categories that can be thought of as func-
tions and are defined recursively.

Definition 1.1 We define a set of CCG categories C as:
Atomic categories: A finite set of base categories denoted
{A,B,C...} ∈ C.

Complex categories: Given a set of categories C, where
Z ∈ C and {W,X, Y, ...} 6= ∅ and {W,X, Y, ...} ∈ C,

then Z/{W,X, Y, ...} ∈ C and Z\{W,X, Y, ...} ∈ C.
Atomic categories can be thought of as a zero-arity func-
tion that transitions from any initial state to a state associ-
ated with the atomic category. Complex categories define
curried functions (Curry 1977) based on the two left asso-
ciative operators ”\” and ”/”. These operators each take a
set of arguments (the categories on the right hand side of the
slash, ({W,X, Y...}) and produces the state identified with
the atomic category specified as its result (the category on
the left hand side of the slash, Z). The slash also defines
ordering constraints for plans, by indicating where the cate-
gory’s arguments are to be found relative to the action. For-
ward slash categories find their arguments temporally after
the action, and backslash categories before it. The following
definition will also be helpful.
Definition 1.2 A category R is the root or root result of a
category G if it is the leftmost atomic result category in G.
For example, for a complex category (C\{A})\{B}, the
root would be C. We can now define a CCG plan lexicon.

Definition 1.3 A plan lexicon is a tuple, Λ = 〈Σ, C, f〉,
where Σ is a finite set of action types, C is a set of possi-
ble CCG categories, and f is a function such that ∀σi ∈
Σf(σi) → {(ci,j : P(ci,j |σi))} such that ci,j ∈ C and
∀σi, ci,j ,

∑
j P(ci,j |σi) = 1.

The function f maps each observable action, σi, to a non-
empty set of pairs each made up of a category, ci,j , and the
conditional probability the action is assigned the category
during parsing, P(ci,j |σi), given that σi is observed. Because
f implicitly defines both Σ and C, we will refer to learning a
lexicon and learning its function interchangeably. Given this
definition, any learning algorithm for a CCG must do two
things. First, it must construct and associate with each action
a set of categories that produce the correct set of parses, and
second, correctly estimate each of the P (ci,j |σi).

However, before we discuss learning CCGs, we must
complete our discussion of how they are used to represent
plans and their use for plan recognition. To combine CCG
categories into a parse we use three combinators defined
over pairs of categories: leftward and rightward application
and rightward composition. We define them as:

Rightward Application:
X/α ∪ {Y } Y

X/α

Leftward Application:
Y X\α ∪ {Y }

X/α

Rightward Composition:
X/α ∪ {Y } Y/β ∪ {Z}

X/α ∪ β
where α and β represent possibly empty sets of categories.
Intuitively, we can think of application and composition
combinators as function application and composition.

The above definitions of actions, categories and combina-
tors are extended to a first-order representation by introduc-
ing parameters for actions and atomic categories to repre-
sent domain objects and variables. For a combinator to be
used both the atomic category and the parameters of its ar-
gument categories must unify. The substitution required to



unify the categories is applied to the result category. We re-
fer the reader to (Geib 2016) for a full discussion of action
and category parameters.

At this point, an example will help clarify the use of CCGs
for plan recognition. Consider the following simple three ac-
tion CCG for delivering packages using a truck.

CCG: 1

f(load(P))→ {( ld(P) : 1)}
f(drive(Loc))→
{(( dlv(P,Loc)/{unld(P)})\{ld(P)} : 1)}

f(unload(P))→ {( unld(P) : 1)}

The actions load(P), unload(P), and drive(Loc) each have a
single parameter capturing either the package being loaded
or unloaded, P, or the delivery destination, Loc. Since each
action has only a single category, P (ci,j |σi) = 1 for each
of them. Further notice that each mapping defines how the
action’s parameters are used in the category. Note that a cat-
egory can have parameters that are not bound by its own
action, but will be bound by other actions during parsing
(consider the category for drive(Loc)).

Now, consider the sequence of ground action instances:

[ load(p23),drive(l2),unload(p23) ].

Figure 1 shows the recognition of this sequence of actions
as a plan to deliver package, p23, to location l2, using the
given CCG. First, a category is assigned to each action and
its parameters bound on the basis of the action. This results
in the categories shown in line two of Figure 1. The category
((dlv(P,l2))/{unld(P)})\{ld(P)} requires a ld(P) to its left.
Binding P to p23 unifies ld(P) with ld(p23) and allows
leftward application to produce dlv(p23,l2)/{unld(p23)}
shown in line three. This category expects a unld(p23) to
the right. Therefore, rightward application can be used to
produces dlv(p23,l2). Since there are no more category ar-
guments or observed actions, parsing ends with the hypoth-
esis of a single package delivery plan, dlv(p23,l2).

1) load(p23) drive(l2) unload(p23)

2) ld(p23) (dlv(P,l2)/{unld(P)})\{ld(P)} unld(p23)
<

3) dlv(p23,l2)/{unld(p23)}
>

4) dlv(p23,l2)

Figure 1: Parsing observations with CCGs

In general, a lexicon will produce multiple parses for each
set of observed actions. We refer to each such parse as an ex-
planation, and note that unlike NLP, a final explanation may
contain more than one category, each of which denotes a
possibly partial plan the agent is hypothesized to be pursu-
ing in parallel. That said, for learning, we will be assuming
that each training instance presented to the system will con-
tain only a single, complete plan instance. Thus, like our
example, a full parse of a training instance should yield an
explanation with a single atomic category. We will call such
explanations complete, and any explanation with more than

one category or containing complex categories as incom-
plete. Intuitively, if parsing only produces incomplete expla-
nations then either we have observed only a plan fragment,
or our grammar needs to be extended.

While our example does not show it, ELEXIR does com-
pute a conditional probability for each explanation given the
observed actions, and we refer the reader to (Geib 2009;
Geib and Goldman 2011) for a complete discussion of its
probability model. This probability is computed by multi-
plying the conditional probability that each action was ini-
tially assigned the category used in the explanation (the
P(ci,j |σi) in the lexicon) by the prior probability of the root
results of the categories in the explanation. This work will
not learn the priors for root results, and instead assumes
these are tunable parameters assigned constant values. How-
ever, our learning algorithm will be estimating the values of
P(ci,j |σi) for each action category mapping in the lexicon.

Learning Method
Learning a CCG grammar is just the modification of a lex-
icon’s action to category, conditional probability mapping,
(ie. f(σi) → (ci,j : P (ci,j |σi)) ) to produce more ac-
curate parsing. As such, learning requires two interleaved
processes: generating action, category pairs (LexGen), and
estimating action, category pair conditional probabilities
(ParamEst). We will discuss these processes separately be-
low. However, Algorithm 1 is the high level pseudo code for
our learning algorithm, LEXlearn, where Λcur refers to the
current lexicon.

Algorithm 1 Overall Learning Algorithm
procedure LEXlearn(( Ti, Gi), Λinit )

Let Λcur = Λinit

for i = 1 to n do
Λcur = Λcur ∪ LexGen (Ti,Gi)
ParamEst (Ti, Gi, Λcur)

end for
Return Λcur

end procedure

LEXlearn takes two inputs, an initial lexicon, Λinit, and
a set of training pairs, { ( Ti, Gi) : i = 1 ... n }, where each
Ti denotes a plan trace, a sequence of action observations,
σ1...σm, that achieve a goal state, Gi. LEXlearn assumes
that each each Ti results in its respective Gi although the
trace may be noisy which we will discuss shortly. The ini-
tial lexicon, Λinit, assigns a single atomic category to each
action. This atomic category’s parameters are identical to
those of its action. This has the effect of limiting the prior
knowledge of the domain to the available actions and their
parameters.

Generating Action Category Pairs (LexGen)
The core of generating action category pairs is the addition
of new complex categories to an individual action’s entry
in the lexicon. However, ELEXIR does not support the full
space of potential complex categories. Therefore, the com-
plex categories LEXlearn considers for addition are limited



in two ways to produce useable ELEXIR lexicons. First,
ELEXIR requires that all complex categories are leftward
applicable, that is, all leftward arguments to complex cate-
gories are ”outside” (must be discharged by application or
composition before) any rightward-looking categories. Sec-
ond, ELEXIR does not fully support the use of complex cat-
egories as arguments to other complex categories. Therefore,
LEXlearn only considers leftward applicable categories with
atomic categories for arguments.

LEXlearn places one further requirement on complex cat-
egories considered for addition to the lexicon. New cate-
gories can have no more than two argument categories to the
left or right. This limitation biases LEXlearn to abstract fre-
quent subsequences and learn hierarchical plan structures. If
the number of argument categories is unbound, lexicons can
be learned that have a single complex category for each ob-
served plan instance that has an argument for each action in
the observation sequence. This effectively reduces the lex-
icon to a lookup table of possible plans rather than a gen-
erative grammar. While this can be effective for very sim-
ple domains, it requires no abstraction, and will not scale to
real world sized domains. Abstracting common action sub-
sequences into sub-plans that can be reused and result in
more compact lexicons is preferred. Therefore we limit new
LEXlearn categories to at most two learned argument cate-
gories, and leave exploring larger limits to future work.

Given these three limitations, all possible new categories
are captured in one of following five category templates:

Templatecats =



Cnew\{Cx}
Cnew/{Cy}
Cnew/{Cx}/{Cy}
Cnew/{Cx}\{Cy}
Cnew\{Cx}\{Cy}


where Cnew is either the atomic category representing the
trace’s goal,Gi, or a new atomic category introduced to rep-
resent a potential common sub-sequence. Cx and Cy are ex-
isting atomic categories in the lexicon other than Gi.

These templates are used to construct new complex cat-
egories for each action. For each action, the algorithm con-
siders the set of all categories consistent with at least one
of the templates that produce a yield of actions consistent
with the observed Ti and Λcur. For each Cnew generated by
this process, the system defines its parameters as the union
of the current action’s parameters and the new category’s ar-
gument’s parameters. If the action and argument categories
have parameters bound to the same object in the domain, the
newly created category is given only a single parameter for
this object. This effectively requires that in the future these
action and argument parameters must always be bound to
the same object. Note that if another trace does not have this
co-reference a new category with a larger set of parameters
will be considered. Thus the algorithm will consider both
possibilities for the lexicon when evidence is provided.

Initial experiments showed that actions that occurred
more than once in a trace, frequently converged to an atomic
category as the most likely. This is consistent with the in-
tuition from information theory that more frequently occur-

ring observations convey less information(Shannon 1951).
Further, considering all possible categories for such actions
resulted in a significant reduction in the speed of the learner.
Therefore, to improve the algorithm’s runtime, for actions
that are observed more than once, action category pairs are
only generated for a single randomly chosen instance of
the action in each trace. Assuming the action occurs often
enough in a large number of traces, this process will con-
verge to the full set of action category pairs for these actions
while reducing the processing load for each individual trace.

Finally, this process computes an initial conditional prob-
ability, K, for the new hypothesized action category pairs
before adding them to Λcur. Let Λ denote the set of new,
unique action category pairs and Λ(σi) denote the set pairs
in Λ for σi ∈ Ti. Also, let M be number of unique pairs in
Λ(σi) ∪ Λcur(σi). We define the conditional probability of
each category in the grammar as:

Kσi,ci,j =

{
(1− |Λ(σi)|

M ) ∗ P (ci,j |σi) σi := ci,j ∈ Λcur

1
M σi := ci,j is new

Critically, this formula allows us to maintain the probability
distribution associated with the categories for an action from
Λcur while adding a new action category pair.

A small example will illustrate the whole process of gen-
erating action category pairs for the drive() action in the ear-
lier delivery example. Consider the initial lexicon, Λinit, for
the three domain actions:
CCG: 2

f(load(P))→ {( ld(P) : 1)}
f(drive(Loc))→ {( drive(Loc) : 1)}
f(unload(P))→ {( unld(P) : 1)}

Next, consider again the simple plan trace Ti made up of
three observable actions,

[ load(p23) , drive(l2), unload(p23) ],

and the goal of delivering p23 to l2, dlv(p23,l2).
First, when considering the action drive(l2), we choose

the set of category templates consistent with the order of
actions in Ti: 

Cnew\{Cx}
Cnew/{Cy}
Cnew/{Cx}\{Cy}


Note that we excluded Cnew\{Cx}\{Cy} and
Cnew/{Cx}/{Cy} because these templates require ei-
ther two actions to the left or right of drive(l2) and are
therefore inconsistent with the trace.

Second, for drive(l2) we construct the new action cate-
gory pairs consistent with these templates, and compute ini-
tial conditional probabilities for them. There are three such
possible new pairs, one using each of the above templates,
shown in CCG:3, resulting in a total of four action category
pairs for drive(l2). Therefore,M = |Λ(σi)∪Λcur(σi)| = 4,
and all action category pairs for drive(l2) will have an ini-
tial probability of 0.25. The resulting grammar is shown in
CCG:3 where Cat1 and Cat2 are new root categories cre-
ated during the action category generation process.



CCG: 3
f(load(P))→ {( ld(P) : 1)}
f(drive(Loc))→ {( drive(Loc) : 0.25),

(( dlv(P,Loc) /{ unld(P) })\{ld(P)} : 0.25)}
((Cat1(P,Loc)\{ld(P)} : 0.25)}
((Cat2(P,Loc)/{unld(P)}) : 0.25)}

f(unload(P))→ {( unld(P) : 1)}
Notice that the parameters for the category dlv, Cat1, and
Cat2 are drawn from both drive() and the argument cate-
gories for each.

Estimating Parameters (ParamEst)
We now look at the process of parameter estimation.
LEXlearn follows (Zettlemoyer and Collins 2005) by us-
ing gradient ascent to estimate action, category conditional
probabilities. Given a plan trace, Ti, and lexicon, Λcur, we
want to update the probability distributions of action, cate-
gory pairs in Λcur for actions that occur in Ti. To do this, we
use ELEXIR with Λcur on the current plan trace to produce
a set of explanations. Since each trace is known to be com-
plete, we can remove from ELEXIR’s output any incomplete
explanations or explanations that do not result in Gi. We de-
note this set as EXP′Ti,Λ

cur . We update the probabilities in
Λcur on the basis of this filtered set of explanations.

For each action category pair that occurs in EXP′Ti,Λ
cur ,

we update its probability based on the probability of the
other categories associated with the action. Let (σj , cj,k) be
an action category pair, and let E ⊆ EXP′Ti,Λ

cur be the set
of all explanations in which (σj , cj,k) occurs. We compute
θ′σj ,cj,k

, the probability of the category for a given trace, as:

θ′σj ,cj,k
=

Σe∈EP (e) ∗ fe(σj , cj,k)

Σc∈Λcur(σj)Σe∈EP (e) ∗ fe(σj , c)
where fe(σj , cj,k) denotes the frequency with which cj,k is
assigned as the category for σj in explanation e, and P (e)
denotes probability of the explanation. Note the denomina-
tor normalizes this number by summing across all of the
categories σj could be assigned. The action category pair’s
conditional probability can now be updated using:

θσj ,cj,k = θσj ,cj,k + α ∗ (θ′σj ,cj,k
− θσj ,cj,k)2

where the parameter α controls the speed of learning. Notice
that θσj ,cj,k is an unnormalized estimate of the conditional
probability. We therefore compute the new conditional prob-
ability by normalizing the estimated probabilities:

P (cj,k|σj) =
θσj ,cj,k

Σc∈Λcur(σj)θσj ,c

To prevent over-population of action category pairs in the
lexicon, and the production of large number of incomplete
explanations, we next remove pairs with a conditional prob-
ability below a threshold, τ . Note that only action category
pairs with complex categories can be pruned. Atomic cat-
egories with sub-τ probabilities are left in the lexicon to
guarantee that there is always at least one category for ev-
ery action. Since this thresholding may cause the summation
of an action’s category probabilities to be less than one, we
re-normalize the probabilities one final time.

Empirical Evaluation
The objective of this work was to learn plan CCGs for use
in ELEXIR, and our experiments use this system for eval-
uation. We also considered translating our grammars into
the forms used by other plan recognition systems to eval-
uate them. However, this presented two problems. First, this
translation would result in a loss of learned domain infor-
mation for non-hierarchal systems resulting in an ”apples
to oranges” comparison. Second, we were concerned that
translation of the grammars to other representations would
open our evaluation to questions concerning the accuracy
and optimality of the translation. Thus, given our objective,
our evaluations of the learned grammars only use ELEXIR.

We ran LEXlearn on five domains, four of which are from
the international planning competition: Rovers, Depots, Lo-
gistics, and Satellites. The fifth is the Monroe domain, a dis-
aster management domain(Blaylock and Allen 2005). In the
rest of this section we will first provide a brief description
of each domain and define our metrics, experimental setup,
and results. Finally, we describe the structural differences
between LEXlearn and HTN-Maker’s (Hogg, Muñoz Avila,
and Kuter 2008) learned representations.

The rovers domain captures plans for an autonomous
rover executing data-gathering missions that require gath-
ering and transmitting one of three types of data to a lander:
rock, soil, and image. Thus, the rover has three distinct ob-
jectives, each with a goal state that we want to learn: rock-
MissionComplete, soilMissionComplete, and imageMission-
Complete. The Depots domain describes plans of an agent
whose task is to move cargo from one location to another.
The agent accomplishes its tasks by loading a crate onto a
truck, driving from one location to another, and unloading
the crate at a destination. In our setup, there are two loca-
tions, depot and distributor. Thus, there are four different
goal states to learn plans for, each corresponding to where
the truck travels: driveFromDepotToDepot, driveFromDe-
potToDistributor, driveFromDistributorToDepot, and drive-
FromDistributorToDistributor.

For our experiments, we slightly modified the Depots do-
main. The original description of Depots had a single ac-
tion for driving from a starting location to destination. This
meant that the only evidence for the particular goal was in
the bound value of the destination parameter of the drive ac-
tion. This made it impossible for the learner to distinguish
between traces for the different goal states, even though it
was able to correctly learn the parameters for the complex
categories. Therefore, we added four distinct drive actions
to the domain description, driveToXFromY, where X and
Y are distinct locations in our domain.

The Logistics and Satellites domains are based on the
HTN domains used by HTN-Maker. Logistics domain cap-
tures plans for moving packages from one city to another us-
ing trucks and planes. Satellites domain describes plans for
capturing images of a given point-of-interest from a satellite.
The satellite is required to calibrate its imaging device and
reposition itself towards the point-of-interest to capture im-
ages. We generate plan traces for both domains by solving
a set of one-hundred planning definitions using the HTN-
Solver2 planner (Nau et al. 1999). To shorten the learners



runtime to allow for more experiments, plan traces were lim-
ited to those with a maximum of six actions. However, this
reduced the number of available plan traces. We increased
the number of traces in two ways. First, we restricted the
planning definitions for Logistics to a single goal. Satellites
was not restricted in this way. Second, for both domains, we
duplicated each of the plan traces in the dataset fifty times.
This had the knock-on effect that with high probability, plan
instances in the testing dataset were seen during training.

The Monroe domain captures plans for disaster relief in-
cluding, providing medical aid, plowing snow, and clearing
debris from roads. We base our domain off the publicly-
available Monroe dataset generated by the SHOP2 plan-
ner (Nau et al. 2003). The goals in the Monroe dataset in-
clude plowRoad, clearRoadHazard, and setUpShelter. Like
the Logistics and Satellites domains, we reduced the original
dataset of 5000 plan traces to run more experiments.

Our learner has four tunable parameters. The parameter τ ,
used to prune low probability categories, is set to 0.0625 for
all our experiments. This value was determined by the max-
imum number of categories generated per action for a plan
trace size of 6. The second parameter for our experiments is
the prior root probability of all atomic categories in the lex-
icon. Recall that the probability of an explanation is com-
puted using this prior probability. For all experiments, we
set the prior root probabilities for all atomic categories and
goal category to 0.01 and 0.99, respectively. This strongly
biases the system to learn grammars that have the goals. The
third parameter is the number of iterations for gradient as-
cent, MaxGA, which is set to five, and finally, the learning
parameter, α, was set to 0.001 based on initial experiments.

We use two metrics for evaluating the learned grammars.
The first metric, following (Zhuo, Muñoz-Avila, and Yang
2014) is the F1 Score:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

where precision and recall (Zettlemoyer and Collins 2005)
adapted for this domain are:

Precision =
# of correct explanations
# of parsed plan traces

Recall =
# of correct explanations

# of plan traces

The second metric is Mean-Time-To-Recognition (MTTR)
or the average percentage of actions in a trace required to
recognize the goal. We formalize MTTR as follows. The
conditional probability (CP) of an atomic category, G, for
a trace is defined as:

CPG =

∑
e∈E

P (e)∑
e′∈E′

P (e′)

where E is the set of explanations such that G is the root
result of at least one of the categories in the explanation,
and E′ is the set of all explanations for the plan. Next, we
define Time-To-Recognition (TTR) as the percentage of the
plan trace before which the CP of the goal category is higher

Figure 2: F1 scores for multiple domains as noise increases.

than any other category in the domain and remains so for the
duration of the trace. Using TTR, we define MTTR as:

MTTR =
1

|T |
∑
t∈T

tTTR

where T is a set of correctly pared plan traces, and tTTR is
Time-To-Recognition for the trace t.

To evaluate MTTR values, we consider another statis-
tic, Average Goal Location (AGL) in the highest probability
parse. We define the goal location as the percentage of the
trace that occurs before the action with Gi as the root result
of its category. AGL is computed in the same way as MTTR,
with goal location tGL replacing tTTR.

For each domain we ran LEXlearn five times each time
simulating different levels of noise in the plan traces. We
tested noise percentages ranging from zero to twenty five
percent in increments of five percent. Each run’s dataset was
generated by randomly dropping actions from each trace
based on the given noise percentage and then shuffling the
order of the complete plan traces. F1 scores were then aver-
aged over each noise level’s five runs (Figure 2). MTTR and
AGL were averaged only over the noise free level’s five runs
(Table 3). For all learning runs, we split the plan traces into
80% training and 20% testing instances. Results in Figure 2
and Table 3 were generated by training our learner on the
training instances, and testing on the testing instances.

Looking at F1 scores for each domain across different
noise levels, we expected an increase in noise would signif-
icantly reduce the F1 score, and most of the domains follow
this trend. Surprisingly, logistics remained almost constant
as noise increased. Looking at the results of the learning al-
gorithm and plan recognition suggest an explanation for this.
First, the noise free F1 score was the lowest tested. Looking
at the traces from this dataset revealed that it contained sev-
eral traces which contained complete plans as a subset. Thus,
when parsing the complete trace, the subset trace was parsed
to a goal state which led to parsing failure for the rest of the
plan in the noise free setting. However, this unintentional
redundancy in the plan trace may have forced the learning



Domains MTTR AGL
Logistics 85.8% 87.7%
Rovers 56.8% 54.5%

Satellites 82.0% 65.8%
Monroe 93.8% 95.1%
Depots 87.1% 62.2%

Figure 3: MTTR and AGL values for various domains

of a larger number of categories allowing the grammar to be
more resilient to missing observations. In fact, the grammars
learned using noisy traces contained action category pairs
with high probabilities, which implies the learner saw simi-
lar structures between noisy and noiseless plans confirming
our hypothesis, and explaining how ELEXIR was able to
correctly parse these noisy plan traces.

Having established the accuracy of the learned grammars
even in relatively noisy domains, we turn to the MTTR and
AGL values in Table 3. Low MTTR values are preferred.
The lower the value, the earlier the system recognizes the
correct plan, and the sooner one might be able to act on that
knowledge. The relatively high values for the various do-
mains is initially disappointing, but reflect a number of dif-
ferent issues. First with the shorter plans, effects on MTTR
are pronounced. Adding even one action to the MTTR for a
five step plan raises the MTTR by twenty percent.

Second, ELEXIR is unable to recognize plans for a given
category until an action with that category as its root result is
observed in the trace. AGL values measure when on average
such an action occurs in each trace. Note that for all but two
domains the MTTR and AGL values are very close, indicat-
ing that ELEXIR is recognizing the correct plans within a
very small window of when it is first able to do so. How-
ever, there was a larger difference between MTTR and AGL
for both Depots and Satellites. We believe this was the result
of ambiguity in the learned grammars and are exploring if
the cause of this is endemic to the domain or could be fixed
by a change in the learning parameters. Finally, (Geib 2009)
has shown that multiple plan CCGs with the same yield can
have a significant differences in MTTR. MTTR is depen-
dent both on the complex categories added to the grammar
as well as the parameter model and its estimation process.
As a result, biasing the learning algorithm to produce gram-
mars with lower MTTR is an exciting area for future work.

Comparison to HTN-Maker
Finally, we briefly compare the structures learned between
LEXlearn and HTN-Maker. While these systems share a
very similar goal their resulting structures are very differ-
ent. Figure 4 illustrates the different representations learned
for the plan [Turn On, Turn Satellite, Calibrate Sensors,
and Take Image] from the Satellites domain. HTN-Maker
was designed to generate right-recursive structures shown in
Figure 4a As such, HTN-Maker is unable to efficiently cap-
ture frequently occurring sub-sequences of actions that are
not right-recursive as separate plan sub-structures in its rep-
resentation. This prevents HTN-Maker from finding some
useful abstractions within the traces and can therefore result

(a) HTN-Maker representation

(b) LexLearn representation

Figure 4: Representations from HTN-Maker and LEXlearn

in larger representations with less generality than LEXlearn.
For example, LEXlearn was able to find such common sub-
structures in the Satellites domain. Figure 4b shows a HTN-
Maker style parse tree where LEXlearnwas able to identify
the action sequence [Turn On, Turn Satellite] as a common
sub-sequence of traces in the Satellites domain and learn a
single complex category for its recognition.

Conclusion and Future Work
This paper presented LEXlearn, an incremental supervised
learning algorithm for plan CCGs. While encouraging, this
work is just a first step toward learning such grammars. More
testing needs to be performed to identify parameter values
for the algorithm that will guarantee high performance and
robustness on larger and more complex domains. Further,
there are also a number of issues that we have left for future
work. These include: learning larger complex categories,
concurrent learning of root result priors needed by ELEXIR,
learning more expressive parameter models for categories,
biasing learning to produce grammars with lower MTTR
values, and learning plan CCG categories for partially or-
dered plans. That said, we believe these results are very
promising and demonstrate that the CCG grammars needed
for plan recognition by ELEXIR can be learned.
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